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Abstract. We present c-axis resistivity measurements performed on the organic conductors (TMTSF)2PF6
and (TMTTF)2PF6 under pressure. The aim is to probe the density of states of quasi-one dimensional
compounds the high temperature properties of which are those of a Luttinger liquid. It is found that the
1-D Luttinger description breaks down below a specific pressure-dependent temperature, giving rise to a
transient regime. The Fermi liquid behaviour is however restored at low temperature i.e. around 10 K, as
evidenced by NMR measurements. Accordingly, two different energy scales 100 K and 10 K are required
to get a fair understanding of all observed physical phenomena. Our interpretation supports the picture of
a power law exponent Kρ for the correlation functions of the order of 0.25-0.30.

PACS. 67.55.Hc Transport properties – 71.10.Pm Fermions in reduced dimensions (anyons, composite
fermions, Luttinger liquid, etc.) – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and
bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, luttinger liquid, etc.)

1 Introduction

The essence of Fermi liquid (FL) theory is the descrip-
tion of the low energy elementary excitations of interacting
electrons in terms of an ensemble of free “quasiparticles“
behaving as particles dressed by interactions-related high-
energy effects [1]. This picture has been remarkably suc-
cessful, explaining for example, itinerant magnetism, the
physics of heavy fermion compounds and providing the
starting point for the classical Bardeen Cooper Schrieffer
(BCS) model of superconductivity. However, theoretical
limits are known for the applicability of the FL theory.
This is the situation encountered in the strong coupling
limit (the Mott transition) and also the case of electrons
confined in one dimension. In this latter situation, the
failure of the model concerns the essential requirement
that in a FL the width of the quasiparticle states should
be small as compared to their energy. This is no longer
fulfilled in dimensionality one. Instead, low energy excita-
tions in 1-D metals are best described by collective exci-
tations which separate into spin and charge modes each
with different (interaction dependent) velocities [2–6]. The
main features of the 1-D electron gas (also called the Lut-
tinger liquid) are (i) a decoupling between spin and charge
degrees of freedom, (ii) the absence of any discontinuity in
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the distribution function for electron states at the Fermi
energy and (iii) a power law decay at long distance of the
spin or charge correlations functions which leads to the
absence of long range order in a 1-D system.

Confronted with the unusual magnetic, optical and
transport properties displayed by high Tc cuprates, sev-
eral theoreticians have claimed that a non-FL description
was also necessary to interpret the physical properties of
these new low dimensional conductors [7]. The issue of
whether one may extend the 1-D Luttinger liquid ap-
proach to the two-dimensional case for the cuprates (as
proposed by Anderson [8]) is still hotly debated. In par-
ticular, a major theoretical problem deals with the sta-
bility of the Luttinger liquid when interchain coupling is
gradually switched on.

The purpose of the present article is to contribute to
this controversial debate through the study of the DC
transport properties displayed by the one-dimensional or-
ganic conductors family which has led to the discovery
of organic superconductivity, namely the (TM)2X series
where TM stands for TMTSF (tetramethyltetraselenaful-
valene, selenide compounds) or TMTTF (tetramethylte-
trathiafulvalene, sulfur compounds).

The one-dimensional character of the electronic struc-
ture of TM2X materials is based on the anisotropy of the
tight-binding overlap integrals along the three directions,
i.e. 1/0.1/0.005 for the high (a), intermediate (b) and
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weak (c) coupling directions respectively. Orders of magni-
tude for sulfur and selenide compounds in the TM2X series
are ta ∼ 0.15 eV and 0.3 eV respectively [9]. The coupling
along the c-direction is not known with much accuracy
but crudely speaking it does not reveal any significant dif-
ference between sulfur and selenide compounds. A typical
calculated value of tc = 1 meV suggests that it can be
ignored when dealing with the high or intermediate tem-
perature regime of most compounds [10]. Consequently,
the 2-D approximation is presumably no longer valid at
very low temperature, i.e. at T < 5 K or so. However, the
situation is dramatically different for the b-coupling. The
value of the bare coupling tb ∼ 20 meV in selenide com-
pounds makes this coupling quite pertinent in the tem-
perature domain 300-100 K [10,11]. The main question
raised by such an amplitude for the intermediate coupling
is whether Q-1-D conductors can still exhibit properties
which are reminiscent of the Luttinger liquid behaviour.
There is an on-going controversy on this issue [12,13].

However, the existence of non-FL features is not dis-
puted in the sulfur compounds. (TMTTF)2X materials
behave very much like canonical 1-D conductors. The
charge becomes localized below 250 and 100 K in
(TMTTF)2 PF6 and Br respectively due to Umklapp scat-
tering of electrons in a commensurate 1-D lattice [14]
while the static susceptibility remains unaffected by this
localization (spin-charge decoupling) showing only a slight
temperature dependence and stays finite at low tempera-
ture (above the onset of spin-Peierls or spin density wave
long range order) [9,15]. Furthermore, the temperature
dependence of the hyperfine-induced nuclear spin relax-
ation has been found to follow very closely the predictions
made for a Luttinger liquid [16], namely

T−11 = C0Tχ
2
S(T ) + C1T

Kρ (1)

where χS(T ) is the (temperature dependent) static sus-
ceptibility or Knight shift, and Kρ is the exponent char-
acterizing the decay of correlations at long distance. This
exponent is also related to the Fermi surface exponent α
giving the power law for nk at kF [2],

α =
1

4
(Kρ + 1/Kρ − 2) (2)

which also governs the spectral density in the vicinity of
the Fermi level in photoemission experiments [17].

Experimental results for (TMTTF)2PF6 interpreted
within the 1-D picture lead to Kρ = 0 (the strong coupling
limit) in good agreement with the behaviour expected for
a commensurate (undoped) 1-D Mott insulator [18]. It
seems that the bare tb coupling, though still of order 100 K
in sulfur compounds [11] does not interfere with a purely
1-D behaviour. As long as the correlation gap ∆ρ related
to the charge localization is larger than the bare tb intra-
chain electron-hole attraction leads to a 1-D electron con-
finement with a concomitant suppression of the effective
transverse coupling [19] and makes interchain single par-
ticle hopping irrelevant in (TMTTF)2PF6. The situation
for selenide compounds is more delicate in many respects

as the temperature dependence of T−11 clearly reveals a
broad temperature regime above the SDW ordering at
12 K in (TMTSF)2PF6 or above 8 K in (TMTSF)2ClO4,
where the relaxation rate deviates from the prediction of
the Fermi Liquid picture (1/T1 ∝ T ), since both 1/T1 and
the spin susceptibility are found to be T independent in
the same temperature regime [18].

Deviations from Korringa law have been identified in
selenide compounds (up to 100 K or so) and a value
Kρ ∼ 0.25 has been derived using the 1-D formalism for
NMR [20]. Furthermore, photoemission experiments per-
formed at 50 K [17] do not show the existence of a finite
spectral weight at the Fermi level. These data may rule
out the possibility of a standard Fermi model in this tem-
perature domain.

The absence of a Fermi edge in photoemission data
pertaining to (TMTSF)2PF6 at 50 K [17] is in fair agree-
ment with assigning a value Kρ ∼ 0.25 from NMR relax-
ation. However, the temperature dependence of the
(TMTSF)2PF6 resistivity along the most conducting di-
rection reveals an ambient pressure metallic-like behaviour
with ρa(T ) ∼ T 1.8 between 300 and 100 K becoming ap-
proximately ρa(T ) ∼ T 2 below and down to the very
abrupt metal-SDW transition at 11.5 K [15]. This be-
haviour is at first glance in serious contradiction with
the temperature dependence of the resistivity which is
expected from Umklapp scattering theory in a 1-D half
filled band conductor, namely ρa(T ) ∼ T 4Kρ−3, i.e. T−2

[21], given Kρ ∼ 0.25 from NMR data. Such a paradoxical
situation has stimulated new studies, in particular exper-
iments which could provide a closer access to the spectral
density in the vicinity of the Fermi level.

Stimulated by the claim that the temperature depen-
dence of the conductivity for the direction of weakest cou-
pling (σc) supports the picture of a 2-D non Fermi liq-
uid behaviour for cuprates [22], an extensive study of the
T and P dependence of ρc in (TMTSF)2PF6 an
(TMTTF)2PF6 has been undertaken. A preliminary ac-
count of these results together with an improved version
of the (TM)2X generic diagram are presented in this arti-
cle.

Early reflectance studies on (TMTSF)2PF6 have con-
cluded to the existence of a well defined reflectance edge
at room temperature for light polarized parallel to the a
direction [23,24]. As far as the b′ direction is concerned
only an overdamped plasmon behaviour is observed at
300 K with no well characterized reflectance edge, and
it is only below 100 K or so that such an edge feature can
be observed and has been ascribed to a dimensionality
cross-over along the b-direction [23,24]. Much less work
has been devoted to the c direction, but the absence of
any reflectance in the far IR regime for (TMTSF)2AsF6
at T = 30 K has led Jacobsen et al. [25] to the con-
clusion that no coherent transport can be established in
this compound down to 30 K (at least). The study of
static transport ρc had also been the matter of some work
in the early days of (TMTSF)2X materials. Jacobsen et
al. [23,24] were the first to report a non-monotonic tem-
perature dependence of ρc in (TMTSF)2PF6 at ambient
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Fig. 1. Typical sets of c-axis
and a-axis resistivity curves per-
formed on both (TMTTF)2PF6
(left panel) and (TMTSF)2PF6
(right panel) under pressure.
Note the well defined ρc max-
imum which shifts toward high
temperatures as pressure is fur-
ther increased. Inset of right
panel depicts the pressure de-
pendence of ρc/ρa anisotropy in
(TMTSF)2PF6 at room temper-
ature.

pressure going through a well characterized maximum at
80 K at variance with the results for ρa and ρb exhibiting
a monotonous metallic-like decrease upon lowering tem-
perature. The c-axis resistivity has also been extensively
studied by the Zagreb group [26,27] corroborating Jacob-
sen’s data [23,24] and showing that the c-axis component
leads to remarkably reliable measurements.

2 Experimental results

Throughout the study set out below, we used represen-
tative (TMTTF)2PF6 and (TMTSF)2PF6 single crystals
which we cleanly cut off with a sharp razor blade along the
a-axis to get 2 mm-long pieces. Their typical size (length
×width × thickness) was about 2000 × 500 × 100 µm3.
Resistivity measurements were performed through a four-
probe technique to eliminate contact resistances. In order
to follow the anisotropy variation with temperature we
measured resistivity along both a and c axis. For the lat-
ter, two gold pads were evaporated onto both (ab) faces
of each sample. In this configuration any contact on one
face and the contact on the other one are rigorously oppo-
site to each other. With regard to ρa, the two inner pads
were used as voltage contacts, and the two outer ones cov-
ered both ends to ensure an homogeneous current flow. In
both setups, 17.5 µm-diameter gold wires were pasted on
each pad with a small amount of silver paint. We mounted
two samples on a 5 mm-diameter support that we covered
with a teflon cap filled up with silicon oil used as a pres-
sure medium. Measurements were performed using an AC
current with 10 µA of peak amplitude. Voltages were mea-
sured by two lock-in amplifiers. The samples were slowly
cooled down (0.1-0.2 K/min) to avoid cracks and ensure a
good thermalization with temperature sensors. Care was

taken to ensure that the results are sample-independent,
in a sense that two samples of different size and shape mea-
sured simultaneously always showed similar ρc behaviour
with a maximum occurring at the same temperature for a
given pressure.
Typical sets of ρc versus T are displayed in Figure 1 at

several pressures up to 9 kbar. These data invariably show
a well defined maximum at Tmax moving towards higher
temperatures as pressure is increased. Tmax is found to be
particularly pressure sensitive since it increases at a rate
of 25% kbar−1. The ρc maximum tends to become shallow
at 9 kbar and the T dependence approaches the behavior
of ρc as measured in (TMTSF)2ClO4 [28]. As shown in
the inset of Figure 1, the pressure dependence is about
the same for ρc and ρa with ∂ lnσ/∂P ∼22% kbar

−1.
The existence of a ρc maximum is also proved to exist in
(TMTTF)2PF6 when submitted to a pressure of 19 kbar
(see Fig. 1). However, releasing pressure from 19 down to
10 kbar, the resistivity maximum smoothly merges into a
monotonically activated resistivity and Tmax can no longer
be defined below 13 kbar.

3 Interpretation

The first point we wish to emphasize is the incoherent
character taken on by the transport in (TMTSF)2PF6
along the c-direction in the whole temperature regime
down to ∼ 20 K. This argument is supported not only
by the absence of any reflectance edge for the light po-
larized along c [25] but also by the failure of the classi-
cal band model to describe the ρc magnetoresistance of
(TMTSF)2PF6. Cooper et al. [27] have pointed out that
the band-like interpretation of the observed Kohler’s be-
haviour of magnetoresistance (∆ρc/ρc0 ∝ H

2/ρ2c0) leads
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Fig. 2. Phase diagram (T-P) of (TMTTF)2PF6 (left panel) and (TMTSF)2PF6 (right panel). Superimposed on the pre-existing
phase diagram for quasi 1-D conductors is displayed the Tmax versus P line (full circles) setting a border between a Luttinger
regime (LL) and a transient phase towards a Fermi liquid. Different compressibility and renormalization effects account for the
apparent Tmax line mismatch between the two organic compounds. Below the TK line a 3D Fermi liquid is fully restored. The
Mott localization line is also depicted (full triangle) and new SDW transition points have been plotted as additional results
of ρc measurements (hollow circles). The superconducting (SC) re-entrance (crosses) is in fact that of (TMTSF)2AsF6 (from
R. Brusetti et al., J. Phys. France 43, 801 (1982)). SP stands for Spin Peierls. Commensurate (Comm) and incommensurate
(Incomm) SDW states have been singled out.

to tc ∼ 0.10-0.16 meV in (TMTSF)2PF6. This value is
about 6 times smaller than what was predicted from the
extended Hückel model, namely tc ∼ 1 meV [10]. Refer-
ring to the structure of (TM)2X salts the heteroatoms of
which do not contribute to the interchain coupling along
the c direction, a wide spread of tc amplitudes over var-
ious members of the series is unlikely. This claim is cor-
roborated by recent extended Hückel calculations lead-
ing to similar values of tc, namely ∼ 0.65 meV in both
(TMTSF)2PF6 and (TMTTF)2Br [29]. The mean free
path along c when evaluated from magnetoresistance data
within a band model leads to the unrealistic value of lc ∼
c/40 at 21 K in (TMTSF)2PF6 [27]. However, the situa-
tion is apparently different for (TMTSF)2ClO4 since the
regime lc > c is achieved at helium temperature (with
lc ∼ 2.17c at 4.5 K [28]).

Furthermore, given the value tc ∼ 0.75 meV, the warp-
ing of the Fermi surface along c is not pertinent since
h̄/τ > tc above 20 K in (TMTSF)2PF6. At ambient pres-
sure, the condition h̄/τ ∼ tc is fulfilled at T = 20 K only.
We may thus conclude that c-axis transport in
(TMTSF)2PF6 remains incoherent down to the SDW
phase transition temperature in spite of the metal-like
temperature dependence of the c-axis resistance displayed
between 80 and 12 K. It has already been stressed in

the context of the conductivity in Luttinger liquids that a
positive temperature dependence of the resistivity does
not necessary imply metallic conductivity [30]. Cooper
et al. [27] have ascribed the deviation to Kohler’s law ob-
served above 80 K to an increase of tc as T increases.
This assumption is somewhat speculative as the study of
the (TMTSF)2PF6 lattice parameters has failed to show
any significant anomalous temperature dependence in the
vicinity of 80 K [31,32]. In addition, thermal expansion
would lead to a decrease of tc rather than an increase at
increasing temperature.

Even though we do not know the exact significance of
Tmax yet, it sets the cross-over between two different tem-
perature regimes for ρc(T ). Since a similar behaviour is
observed for (TMTTF)2PF6 under pressure we may em-
phasize that the cross-over at Tmax(P ) is indeed a gen-
uine property of the (TM)2X diagram, see Figure 2. Fol-
lowing the onset below 100 K of a reflectance edge for
the light polarized along the b-axis, one may argue that
Tmax could mark the beginning of a dimensional cross-
over regime along this direction. However, the very strong
pressure dependence of Tmax rules out a simple relation
such as Tmax ∼ tb since the pressure coefficient of the
bare transverse coupling should amount to that of ta,
i.e. ∼2% kbar−1 according to the independence of ρa/ρb
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anisotropy under pressure [33]. Consequently, the strong
pressure dependence of Tmax suggests that the onset of
the cross-over regime is related to a renormalized value.
As far as c-axis tunneling is concerned, the situation

above Tmax can be described in terms of carriers tunnel-
ing incoherently between Luttinger chains. The problem
has not yet received a detailed theoretical treatment but
it has already been considered in the context of the trans-
verse (c-axis) conductivity between adjacent Luttinger liq-
uids in underdoped cuprate superconductors [34]. Using
the Fermi Golden rule for the hopping rate of carriers
between two Luttinger states, σc follows the power law
σc ∝ (ω, kBT )2α where α is the exponent of the den-
sity of states, see equation (2). Since α is expected to be
positive and smaller than unity in the Luttinger liquid
[2] a negative temperature dependence can be expected
for ρc(T ). A more rigorous derivation will be given in the
next section.

4 Theory

In this section we derive an approximate expression for
the c-axis conductivity σc, for temperatures T such that

tc � tb < T � ta. (3)

In this regime, the thermal wavelength of the electron
is much less than the interchain distances b and c in direc-
tions denoted by y and z respectively. Transport along y
and z is totally incoherent and amounts to the tunneling
of real electrons in and out of 1D Luttinger chains. As a
result, to lowest order in perturbation, thermal averages
will be computed over Hamiltonian H0 which is a sum of
uncoupled 1D Luttinger liquids along x. In effect we are
setting

tb = tc = 0 (4)

in H0. Current along z will be a tunneling current and
to compute it we may either use the Kubo formula or
the tunneling approach followed by Clarke et al. [34] and
Anderson et al. [35]. As we show below both methods give
similar results.
Starting with the Kubo formula, we compute σc(ω);

the T -dependence of the dc-conductivity is obtained by
substituting T for ω.
The current operator in the z direction is

jz = −i
tcec

h̄

∑
ixσ

C+i+1,σ(x)Ci,σ(x) +H.c (5)

where i is the chain index along z and jz is the current
flowing through the (x, y) plane. Computing the current-
current correlator 〈[jz(r, t), jz(r1, t1)]〉H0 allows to extract
the real part of the conductivity [36] and we find

σc(ω) =
8e2

h̄
c2t2c

π/c∫
−π/c

dkz
2π
sin2 kzc

×

∫
dx′
∫
dε

2π

f(ε)− f(ε+ h̄ω)

h̄ω
Ae(x

′, ε)Ah(x
′, ε+ h̄ω),

Fig. 3. Transverse electron tunneling scheme between two Lut-
tinger chains. G>(G<) is the Green’s function for electrons
(holes).

i.e.

σc(ω) =
4e2ct2c
h̄

∫
dx′
∫
dε

2π

f(ε)− f(ε+ h̄ω)

h̄ω

×Ae(x
′, ε)Ah(x

′, ε+ h̄ω). (6)

Ae (Ah) is the spectral function of the real electron (hole)
in the Luttinger liquid, f(ε) = 1

eβε+1
is the Fermi distri-

bution function and x′ = x − x1 is the distance travelled
by the electron (hole) between scattering events.
In the tunneling formalism approach, the tunneling

Hamiltonian reads

tc
∑
ixσ

C+i+1,σ(x)Ci,σ(x) +H.c. (7)

and leads to a tunneling current [36]

I =
4ect2c
h̄

∫
dx′
∫
dε

2π
(f(ε)− f(ε+ h̄ω))

×Ae(x
′, ε)Ah(x

′, ε+ h̄ω). (8)

The conductance g in the z direction is then

g ∼
4e2ct2c
h̄

∫
dx′
∫
dε

2π

f(ε)− f(ε+ h̄ω)

h̄ω

×Ae(x
′, ε)Ah(x

′, ε+ h̄ω) (9)

in agreement with (6) for σc.
The physical process associated with (6, 9) is depicted

in Figure 3. An electron is scattered out of the Luttinger
chain 1, propagates on chain 2 and is scattered back at
a later time. So Ae refers to chain 2 while Ah concerns
chain 1, and by definition (see (4)) subsystems 1 and 2
are decoupled in equilibrium.
The only difference between (6) and (9) and the stan-

dard expression for the tunneling current comes from the
integral over x′, which we get in our case. This integral ex-
presses momentum conservation for the hole and the elec-
tron propagating in chains 1 and 2 respectively. In other
words there is a coherent motion of electrons and holes in
the two chains.
If subsystems 1 and 2 were ordinary metals, a natural

cut-off for the integral over x′ would be the mean free path
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l ∼ vFτa. So we would expect (see for instance [36])

σc = N1(0)N2(0)
τata

h̄
(10)

where N1(0) is the density of states of subsystem 1 and
N2(0) that of subsystem 2.
For “1D Fermi liquids” τ ∼ 1/ω or τ ∼ 1/T (neglecting

logarithmic corrections). If, instead of decoupled chains we
had decoupled planes, and if these planes behaved as 2D
Fermi liquids, we would find σc ∼ 1/T 2. In the present sit-
uation however, electron (hole) states are not eigenstates
of the chain; we should not expect to get a coherent mo-
tion of the electron and the hole if x′ ≥ a, since these
entities decay into spin and charge collective excitations
beyond that distance. Then

σc(ω) ∼
4e2

h̄
act2c

∫
dε

2π

f(ε)− f(ε+ h̄ω)

h̄ω

×Ae(0, ε)Ah(0, ε+ h̄ω). (11)

In the (TMTSF)2PF6 compound, susceptibility data
indicate that the Hubbard U is comparable to the band-
width, so that the charge velocity of the chain vc is much
larger than the spin velocity. In the Luttinger regime, we
then write,

A(x, t) =
1

tα+1
h

(
x

vct

)

where h is a scaling function and leads to

A(x, ε) =
1

vc

(
ε

h̄vc

)α
∼
h

(
ωx

vc

)
· (12)

Plugging (12) into (11) gives the expression for σc:

σc(ω) ∼ t
2
c

e2

h̄

ac

v2c

(
ω

vc

)2α
· (13)

Accordingly, the dc-conductivity σc(T ) is such that

σc(T ) ∼ T
2α · (14)

In essence, this expression is the result of the Fermi Golden
rule for a 1D system with a density of states N(ε) ∼ εα.
σc directly probes the density of states of the Luttinger
liquid.
When tc � ω, T < tb < ta, we may repeat the tunnel-

ing argument for planes, instead of chains. For an
anisotropic system with mean free paths of order τata/h̄
and τbtb/h̄ along a and b respectively, the integral over x

′

yields a contribution of order
√
τataτbtb/h̄

2, provided we

may define quasiparticle states for the (ab) planes. In that
limit, σc ∼

√
σaσb. Furthermore, if the planes behave like

2D Fermi liquids we set α = 0 in (13). Since τ ∼ 1/T 2,
σc(T ) ∼ 1/T 2 so that σc(T )/σa(T ) is a constant in that
regime.

5 Discussion

Attempting to process experimental data in Figure 1 much
attention should be paid to the large volume dependence
of ρc at fixed temperature. Therefore, the ambient pres-
sure T -dependence of ρc cannot be straightforwardly used
to extract the exponent α (which is a constant-volume
quantity). Instead, the conversion from constant pressure
to constant volume must be performed before any compar-
ison with theory is made. This problem has already been
encountered in the study of charge transfer compounds
[37,38]. We may briefly sketch the procedure here. Taking
the unit cell at 50 K as the reference unit cell (this approx-
imation being justified by the lack of thermal expansion at
low temperature) and increasing temperature up to T , a
pressure P must be applied at T in order to restore the ref-
erence volume, taking into account thermal expansion and
compressibility data [31,39]. The results of this procedure
are displayed in Figure 4 using the measured isobaric tem-
perature dependences at 1.5, 2.5, 4.5 and 7.0 kbar. This
procedure leads to the dots plotted in Figure 4 which can
be interpolated by the dashed line in order to derive the
T -dependence at the volume of 50 K and 1 bar. The high
temperature regime suggests ρc ∼ T−1.4 i.e. α = 0.7.
The situation is even more subtle below Tmax as the

motion remains incoherent along the c-axis but coherence
begins to build up between chains in the (ab) planes.
A somewhat similar situation has been encountered for
the interpretation of transport properties in charge trans-
fer salts. In the diffusive regime for c-axis transport in
1-D conductors the transverse conduction remains propor-
tional to the longitudinal a-conductivity, namely σc ∝ σa
[40,41]. The calculation in the previous section can be ex-
tended to the situation where the subsystem is a 2-D liq-
uid although not necessarily Fermi-like with an anisotropic
behaviour. As long as quasiparticle states can be defined
with life times τa and τb along the directions a and b re-
spectively, the resistivity along c should read

ρc(T ) ∝
√
ρa(T )ρb(T ). (15)

Provided the quasiparticle life-times along the a and b
directions exhibit the same temperature dependences the
ρc/ρa ratio turns out to be temperature independent. Such
a behaviour is definitely not observed in the temperature
domain of the incipient 2D Fermi liquid under ambient
pressure and also under 9 kbar, see the inset of Figure 4.
Since the laws ρa ∼ T 2 and ρc ∼ T 1.5 are followed un-
der 1 bar and 9 kbar, we infer from equation (15) that ρb
should linearly depend on temperature. This is in fairly
good agreement with early data for ρb below 80 K [25].
We consider the temperature domain below Tmax as a
broad cross-over regime for the onset of coherence along
the b-direction, with a concomitant evolution towards the
establishment of a 2D Fermi liquid at low temperature.
Hence, it seems to be clear that even if a typical Fermi-
like behavior happened to be applicable to the a-direction
it would not be the case for the b-direction.
Let us point out at this stage the important difference

between the behaviour of (TMTSF)2PF6 at ambient pres-
sure on the one hand and that of (TMTSF)2PF6 under
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Fig. 4. c-axis resistivity of (TMTSF)2PF6 under various hy-
drostatic pressures (P in kbar). The bold, dotted curve depicts
the ρc curve for a would-be (TMTSF)2PF6 compound whose
lattice parameters would remain constant all the way from 50 K
up to room temperature. The constant volume correction pro-
cedure is set out in the text. Inset shows in a log-log scale ρa
(dashed and dotted lines) and ρc (solid lines) at ambient pres-
sure (AP) and under 9 kbar. Obviously the anisotropy does
depend on temperature in the transient regime, even under 9
kbar where the metallic phase is fully stabilized, this being
strongly suggestive of a non-Fermi liquid behaviour.

pressure (9 kbar) or (TMTSF)2ClO4 on the other hand
at T = 20 K; ρc differs by a factor 100 in the two situa-
tions. This feature can be attributed to the fact that an
incoherent to coherent transition along c is induced under
pressure in (TMTSF)2PF6, the signature of which being
a tremendous suppression of ρc (at low temperature) un-
der pressure, see Figure 1 (right panel). It is realistic to
expect a 3-D coherent state to be achieved at low tem-
perature for either Se−ClO4 or Se−PF6 under pressure,
while the ambient pressure phase remains in a 2-D (possi-
bly non Fermi) liquid state for Se−PF6 down to the SDW
phase transition. Consequently, the recovery of the T−11
Korringa behaviour (with a strongly renormalized density
of spin fluctuations) at TK ∼ 10 K which is observed in
Se−ClO4 or in Se−PF6 at 8 kbar (and is also very much
pressure dependent) could be ascribed to the onset of 3-D
coherence, namely tc ∼ 8 K [15].
The region above Tmax in the generic (TM)2X phase di-

agram (Fig. 2) represents isolated chains with a Luttinger

liquid behaviour. The intermediate region in between Tmax
and TK is that of an incipient 2-D Fermi liquid, whereas
this is only below TK that a full 3-D Fermi liquid behaviour
is restored.
In the high temperature phase α = 0.7 as derived from

the T -dependence of ρc (at the fixed unit cell volume of 50
K) leads to Kρ = 0.22 which is very close to the derivation
from NMR data [18].
The value of Kρ derived from ρc allows in turn a pre-

diction for the constant volume T -dependence for ρa at
T > Tmax. At high temperature the resistivity of a
1-D commensurate and interacting electron gas is gov-
erned by Umklapp scattering. Both half-filled and quarter-
filled scattering can be active in the (TM)2X series. When
the lattice dimerization is strong e.g. in the sulfur se-
ries, half-filled U-scattering is expected to dominate and
ρa(T ) ∼ g21/2T

4Kρ−3. However, the lattice dimerization is

much weaker for selenium compounds (dimerization gap
smaller than transverse coupling along b) but we are left
with the remaining quarter-filled U-scattering. Thus, the
resistivity reads [42], ρa(T ) ∼ g21/4T

16Kρ−3. Given Kρ ∼
0.20−0.25 from ρc in the Luttinger regime the expected
constant volume temperature dependence of ρa becomes
ρa ∼ T−1 or ρa ∼ T for half-filled and quarter-filled Umk-
lapp scattering respectively. The conversion of ρa data
from constant P to constant V versus T [15] supports
the claim of quarter-filled Umklapp scattering for the T -
dependence of ρa.
The observation of a Kohler’s law for ρc [27] in the in-

termediate temperature regime is in agreement with our
description and equation (15) but implies neither a coher-
ent motion along c nor a Fermi liquid behavior in the (ab)
planes. The breakdown of this law above Tmax agrees with
the quasiparticle states being no longer the eigenstates in
the Luttinger liquid.
The finding of a small exponentKρ in the intermediate

state at T < Tmax suggests that some 1-D features re-
main even though the 2D anisotropic electron gas evolves
towards a Fermi liquid. Actually, this claim is supported
by the existence of an infrared absorption peak of σ(ω)
which is well defined at 170 cm−1 in the PF6 and also
in ClO4 salts [43–46] and contains most of the spectral
weight.
Finally we must comment on the strong pressure de-

pendence of Tmax which rules out a linear relation be-
tween tb and Tmax. Bourbonnais et al. [13] have derived a
strong renormalization of the intra-chain hopping rate by
the intra-chain electron hole interaction. The 2-D cross-
over thus reads

Tmax ∼ tb

(
tb

ta

) 1−Kρ
Kρ

· (16)

Following the data for (TMTSF)2PF6, equation (16)
implies a pressure dependence for Kρ of 2% kbar

−1 in line
with the lattice dimerization decreasing from left to right
in the diagram of Figure 2. However, the most serious
problem with this model lies in the amount of renormal-
ization which is far too strong for the selenide compounds.
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Equation (16) might be only valid in the case of strong
renormalization, i.e. for the sulfur compounds.

6 Conclusion

A striking behaviour of ρc has emerged from the study of
its temperature and pressure dependence in
(TMTSF)2PF6 and (TMTTF)2PF6. We have identified
a new strongly pressure dependent line in the (TM)2X
phase diagram which is defined by the temperature at
each pressure where dρc/dT = 0 and is related to the
onset of a 2-D cross-over. We infer that the low lying ex-
citations behaviour of the 1-D electron system is that of
a 1-D Luttinger liquid above this line. The intermediate
phase is still not behaving like a Fermi liquid since ρa ∼ T 2

while ρb ∼ T . A Fermi liquid behaviour is restored below
10 K or so, probably of a 3-D nature in (TMTSF)2ClO4 or
in (TMTSF)2PF6 under pressure. The intermediate tem-
perature regime is characterized by different temperature
dependences of the resisitivity along b and a with a tem-
perature dependence of ρc governed by the geometrical
mean between the a and b temperature-dependences. The
b-transverse coupling leading to a deviation from perfect
2-D nesting governs the DC and very low frequency trans-
port while 1-D features can still be observed in the far in-
frared properties. As far as (TMTSF)2ClO4 is concerned,
the intermediate state extends up to room temperature
according to the behaviour of ρc [47] and optical data dis-
playing a transverse plasma edge [25].
The picture of the intermediate temperature range can

be viewed as the coexistence of Mott insulating properties
at high energy with those of a very good metal at low
energy.
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